KI: PRAKTEK 10: AI untuk Deteksi Anomali

From OnnoWiki
Revision as of 03:15, 24 January 2026 by Onnowpurbo (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Fokus sesi ini: kamu bikin “AI security” sederhana yang bisa belajar pola normal dari log, lalu menandai yang aneh (anomaly). Ini bukan “AI yang tahu segalanya”, tapi alat bantu triage biar analis tidak tenggelam dalam jutaan baris log.

Tujuan

Mahasiswa mampu:

  • membangun pipeline deteksi anomali dari log nyata (Linux / web / auth),
  • melatih model unsupervised (tanpa label),
  • menghasilkan daftar event mencurigakan + alasan/fitur ringkas,
  • menyimpan model dan menjalankan deteksi ulang secara berkala.

Output akhir yang ditargetkan:

  • Model tersimpan (.joblib)
  • Laporan evaluasi sederhana (rasio anomali, contoh top N anomali)
  • File hasil deteksi (CSV/JSON)
  • (Opsional) hasil/model dienkripsi dengan GnuPG

Konsep Inti

Deteksi anomali = mencari data yang “jarang”, “jauh dari pola normal”, atau “punya kombinasi fitur yang aneh”.

Kamu akan pakai dua pendekatan:

  • Isolation Forest (tree-based): bagus untuk anomaly detection umum, sering jadi baseline kuat.
  • KMeans + jarak ke centroid: sederhana, cepat, mudah dijelaskan (jarak besar = makin aneh).

Catatan penting: Model unsupervised akan menandai “aneh”, bukan otomatis “jahat”. Anomali ≠ serangan, tapi anomali yang harus kamu cek dulu.

Tools (Open Source)

  • OS: Ubuntu 24.04
  • Python 3 + venv
  • Library: pandas, numpy, scikit-learn, joblib
  • (Opsional) matplotlib untuk grafik ringan
  • (Opsional) GnuPG untuk enkripsi file output/model

Skenario Data Log yang Real (Pilih salah satu atau gabungkan)

Kamu bisa latihan pakai:

  • Linux auth log: /var/log/auth.log

Cocok untuk mendeteksi percobaan login gagal masif, lonjakan aktivitas sudo, jam akses aneh.

  • Nginx access log (lab): misalnya file access.log dari web server

Cocok untuk mendeteksi lonjakan request, path aneh, user-agent janggal, pola scanning.

  • Suricata eve.json (kalau sudah main IDS): event security lebih kaya.

Di modul ini kita buat pipeline yang paling mudah jalan di semua laptop/server: mulai dari auth.log + opsi format log sederhana.

Tahap Praktikum (Step-by-step)

0. Setup Environment di Ubuntu 24.04

Jalankan:

sudo apt update
sudo apt install -y python3-venv python3-pip gnupg
mkdir -p ~/modul10-ai-anomali/{data,models,output,scripts}
cd ~/modul10-ai-anomali
python3 -m venv .venv
source .venv/bin/activate
pip install -U pip
pip install pandas numpy scikit-learn joblib

Checklist: pastikan python --version mengarah ke venv dan pip show scikit-learn ada.

1. Ambil Dataset Log

Opsi A — pakai log asli mesin (paling real)

Copy auth log:

sudo cp /var/log/auth.log ~/modul10-ai-anomali/data/auth.log
sudo chown $USER:$USER ~/modul10-ai-anomali/data/auth.log

Opsi B — bikin dataset latihan (biar kontrol)

Kita akan generate log sintetik “mirip event” (normal + aneh) dari Python (nanti ada script).

2. Prinsip Feature Engineering (Supaya “AI” mengerti)

Log itu teks; model butuh angka. Maka kita ubah event jadi fitur numerik, contoh:

Untuk auth event:

  • hour (jam kejadian)
  • fail_count_5m (jumlah gagal login dalam 5 menit per IP/user)
  • distinct_users_10m
  • is_sudo (0/1)
  • is_failed_password (0/1)
  • src_ip_hash (hash → angka stabil; bukan identitas asli)
  • msg_len (panjang pesan)

Yang penting: fitur harus menggambarkan perilaku (burst, jam tidak wajar, variasi user, dsb), bukan sekadar teks mentah.

Implementasi: Pipeline Lengkap (Python)

Di bawah ini 3 file utama:

  • parser & feature builder
  • training model
  • deteksi + export hasil

A. scripts/parse_authlog.py — parse auth.log → dataset fitur

Buat file:

nano ~/modul10-ai-anomali/scripts/parse_authlog.py

Isi:

#!/usr/bin/env python3
import re
import json
from datetime import datetime, timedelta
from collections import deque, defaultdict

# Auth log default Ubuntu: "Jan 20 13:01:02 hostname sshd[123]: Failed password for ..."
# Catatan: tahun tidak ada, kita isi dengan tahun sekarang (cukup untuk lab).
AUTH_RE = re.compile(
    r'^(?P<mon>\w{3})\s+(?P<day>\d{1,2})\s+(?P

Jalankan:

chmod +x scripts/parse_authlog.py
./scripts/parse_authlog.py --infile data/auth.log --outfile data/auth_features.jsonl
head -n 3 data/auth_features.jsonl

B. scripts/train_models.py — latih Isolation Forest + KMeans

Buat file:

nano ~/modul10-ai-anomali/scripts/train_models.py

Isi:

#!/usr/bin/env python3
import json
import joblib
import numpy as np
from pathlib import Path
from sklearn.ensemble import IsolationForest
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

FEATURE_COLS = [
    "hour", "minute",
    "ip_hash", "user_hash",
    "is_failed", "is_invalid_user", "is_accepted", "is_sudo",
    "msg_len",
    "count_5m_ip", "count_10m_user"
]

def load_jsonl(path: str):
    rows = []
    with open(path, "r", encoding="utf-8") as f:
        for line in f:
            rows.append(json.loads(line))
    return rows

def to_matrix(rows):
    X = []
    for r in rows:
        X.append([float(r.get(c, 0.0)) for c in FEATURE_COLS])
    return np.array(X, dtype=float)

def main():
    import argparse
    p = argparse.ArgumentParser()
    p.add_argument("--infile", required=True, help="JSONL features")
    p.add_argument("--outdir", required=True, help="folder simpan model")
    p.add_argument("--contamination", type=float, default=0.02,
                  help="perkiraan rasio anomali (mis. 0.01-0.05)")
    p.add_argument("--k", type=int, default=8, help="jumlah cluster KMeans")
    args = p.parse_args()

    outdir = Path(args.outdir)
    outdir.mkdir(parents=True, exist_ok=True)

    rows = load_jsonl(args.infile)
    X = to_matrix(rows)

    scaler = StandardScaler()
    Xs = scaler.fit_transform(X)

    iso = IsolationForest(
        n_estimators=300,
        contamination=args.contamination,
        random_state=42,
        n_jobs=-1
    )
    iso.fit(Xs)

    km = KMeans(n_clusters=args.k, random_state=42, n_init="auto")
    km.fit(Xs)

    bundle = {
        "feature_cols": FEATURE_COLS,
        "scaler": scaler,
        "isolation_forest": iso,
        "kmeans": km
    }
    model_path = outdir / "anomali_models.joblib"
    joblib.dump(bundle, model_path)

    # ringkasan cepat
    iso_pred = iso.predict(Xs)  # -1 anomali, 1 normal
    anom_ratio = float(np.mean(iso_pred == -1))

    print("[OK] Model saved:", model_path)
    print(f"[INFO] Events: {len(rows)} | Estimated anomaly ratio (IF): {anom_ratio:.4f}")

if __name__ == "__main__":
    main()

Jalankan:

chmod +x scripts/train_models.py
./scripts/train_models.py --infile data/auth_features.jsonl --outdir models --contamination 0.02 --k 8
ls -lah models

Tips tuning seru: mainkan --contamination (mis. 0.01, 0.03, 0.05). Lihat bagaimana jumlah anomali berubah.

C. scripts/detect_anomalies.py — scoring, ranking, export

Buat file:

nano ~/modul10-ai-anomali/scripts/detect_anomalies.py

Isi:

#!/usr/bin/env python3
import json
import csv
import joblib
import numpy as np
from pathlib import Path

def load_jsonl(path: str):
    rows = []
    with open(path, "r", encoding="utf-8") as f:
        for line in f:
            rows.append(json.loads(line))
    return rows

def main():
    import argparse
    p = argparse.ArgumentParser()
    p.add_argument("--features", required=True, help="JSONL features")
    p.add_argument("--model", required=True, help="joblib model bundle")
    p.add_argument("--outcsv", required=True, help="output CSV anomali")
    p.add_argument("--top", type=int, default=50, help="ambil top N paling anomali")
    args = p.parse_args()

    bundle = joblib.load(args.model)
    cols = bundle["feature_cols"]
    scaler = bundle["scaler"]
    iso = bundle["isolation_forest"]
    km = bundle["kmeans"]

    rows = load_jsonl(args.features)
    X = np.array([[float(r.get(c, 0.0)) for c in cols] for r in rows], dtype=float)
    Xs = scaler.transform(X)

    # IsolationForest: decision_function makin kecil -> makin anomali
    iso_score = iso.decision_function(Xs)  # higher = more normal
    iso_label = iso.predict(Xs)            # -1 anomali

    # KMeans: jarak ke centroid terdekat (makin jauh -> makin anomali)
    centers = km.cluster_centers_
    # hitung jarak L2 ke centroid terdekat
    dists = np.sqrt(((Xs[:, None, :] - centers[None, :, :]) ** 2).sum(axis=2))
    km_dist = dists.min(axis=1)

    # gabung score sederhana: rank berdasarkan 2 sinyal
    # normalisasi kasar
    iso_norm = (iso_score - iso_score.min()) / (iso_score.max() - iso_score.min() + 1e-9)
    km_norm = (km_dist - km_dist.min()) / (km_dist.max() - km_dist.min() + 1e-9)
    # semakin kecil iso_norm = semakin anomali; semakin besar km_norm = semakin anomali
    combined = (1.0 - iso_norm) * 0.6 + (km_norm * 0.4)

    # pilih top N
    idx = np.argsort(-combined)[:args.top]

    outpath = Path(args.outcsv)
    outpath.parent.mkdir(parents=True, exist_ok=True)

    fieldnames = [
        "rank", "combined_score",
        "iso_label", "iso_score",
        "km_dist",
        "ts", "hour", "minute", "proc", "user", "ip",
        "is_failed", "is_invalid_user", "is_accepted", "is_sudo",
        "count_5m_ip", "count_10m_user", "msg_len"
    ]

    with open(outpath, "w", newline="", encoding="utf-8") as f:
        w = csv.DictWriter(f, fieldnames=fieldnames)
        w.writeheader()
        for rnk, i in enumerate(idx, start=1):
            r = rows[int(i)]
            w.writerow({
                "rank": rnk,
                "combined_score": float(combined[i]),
                "iso_label": int(iso_label[i]),
                "iso_score": float(iso_score[i]),
                "km_dist": float(km_dist[i]),
                "ts": r.get("ts", ""),
                "hour": r.get("hour", 0),
                "minute": r.get("minute", 0),
                "proc": r.get("proc", ""),
                "user": r.get("user", ""),
                "ip": r.get("ip", ""),
                "is_failed": r.get("is_failed", 0),
                "is_invalid_user": r.get("is_invalid_user", 0),
                "is_accepted": r.get("is_accepted", 0),
                "is_sudo": r.get("is_sudo", 0),
                "count_5m_ip": r.get("count_5m_ip", 0),
                "count_10m_user": r.get("count_10m_user", 0),
                "msg_len": r.get("msg_len", 0),
            })
    anom_count = int(np.sum(iso_label == -1))
    print(f"[OK] Wrote top-{args.top} anomalies -> {outpath}")
    print(f"[INFO] Total events: {len(rows)} | IF anomalies flagged: {anom_count}")

if __name__ == "__main__":
    main()

Jalankan:

chmod +x scripts/detect_anomalies.py
./scripts/detect_anomalies.py --features data/auth_features.jsonl --model models/anomali_models.joblib --outcsv output/anomali_top.csv --top 50

column -s, -t output/anomali_top.csv | head -n 20

Cara Membaca Hasil

Di output/anomali_top.csv, fokus ke:

  • count_5m_ip tinggi + is_failed=1 → indikasi brute force
  • hour sangat dini (mis. 02:00) + is_sudo=1 → aktivitas admin jam aneh
  • user=unknown / invalid_user=1 berulang → scanning user
  • proc/sshd dominan → serangan ke SSH (umum banget di server publik)

Tugas mini yang menantang:

  • Ambil 10 anomali teratas, lalu tulis analisis 1–2 kalimat per event:
    • “Kenapa ini anomali?”
    • “Apa tindakan lanjut?” (block IP? cek user? cek sistem?)

Simulasi Serangan Ringan (Aman untuk Lab)

Kalau kamu punya VM/host lab sendiri, bisa memicu event gagal login (tanpa merusak):

  • Coba login SSH dengan user salah beberapa kali dari client lab.
  • Atau buat event sudo beberapa kali.

Penting: lakukan hanya di lingkungan yang kamu miliki/diizinkan.

(Opsional) Amankan Model & Output dengan GnuPG

Tujuannya: hasil deteksi bisa berisi data sensitif (user, IP, pola aktivitas). Minimal, kamu bisa enkripsi file output dan model sebelum dipindah/diupload.

1. Generate key (sekali saja)

gpg --full-generate-key

Cek key:

gpg --list-keys

2. Enkripsi output CSV

Misal email key kamu you@example.com:

gpg --output output/anomali_top.csv.gpg --encrypt --recipient you@example.com output/anomali_top.csv

Decrypt:

gpg --output output/anomali_top.csv --decrypt output/anomali_top.csv.gpg

3. Enkripsi model

gpg --output models/anomali_models.joblib.gpg --encrypt --recipient you@example.com models/anomali_models.joblib

Skill security yang dinilai: kamu tidak hanya bikin AI, tapi juga mengelola artefak (model/output) dengan aman.

Output yang Wajib Dikumpulkan

  • data/auth_features.jsonl (atau ringkasannya)
  • models/anomali_models.joblib (atau versi .gpg)
  • output/anomali_top.csv (atau versi .gpg)
  • ...
  • Laporan.md singkat berisi:
    • deskripsi dataset (berapa event),
    • parameter model (contamination, k),
    • 10 anomali teratas + analisis,
    • 3 rekomendasi aksi.

Template laporan cepat:

# Laporan Modul 10 — AI Deteksi Anomali

## Dataset
- Sumber: auth.log
- Jumlah event: ...
- Rentang waktu: ...

## Model
- IsolationForest contamination: ...
- KMeans k: ...
- Fitur: hour, minute, is_failed, count_5m_ip, ...

## Temuan Top 10
1) ...
   - alasan: ...
   - tindak lanjut: ...

## Rekomendasi
- ...
- ...
- ...

Challenge Upgrade (Kalau Mau Naik Level)

Kalau mahasiswa cepat selesai, kasih 1–2 tantangan ini:

  • Tambahkan fitur: hari (weekday) dan deteksi “akses weekend”.
  • Buat mode “stream”: baca log baru (tail) dan skor on-the-fly.
  • Ganti auth.log ke Nginx access log dan buat fitur:
    • request per IP per menit,
    • status code 404/500 burst,
    • path yang jarang muncul.


Pranala Menarik