Difference between revisions of "Orange: Manifold Learning"
Onnowpurbo (talk | contribs)  (Created page with "Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/manifoldlearning.html    Nonlinear dimensionality reduction.  Inputs      Data: input dataset  Output...")  | 
				Onnowpurbo (talk | contribs)   | 
				||
| Line 15: | Line 15: | ||
Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with Scatter Plot or other visualization widgets.  | Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with Scatter Plot or other visualization widgets.  | ||
| − | + | [[File:Manifold-learning-stamped.png|center|200px|thumb]]  | |
| + | |||
     Method for manifold learning:  |      Method for manifold learning:  | ||
| − | |||
         t-SNE  |          t-SNE  | ||
| − | |||
         MDS, see also MDS widget  |          MDS, see also MDS widget  | ||
| − | |||
         Isomap  |          Isomap  | ||
| − | |||
         Locally Linear Embedding  |          Locally Linear Embedding  | ||
| − | |||
         Spectral Embedding  |          Spectral Embedding  | ||
| − | |||
     Set parameters for the method:  |      Set parameters for the method:  | ||
| − | |||
         t-SNE (distance measures):  |          t-SNE (distance measures):  | ||
| − | |||
             Euclidean distance  |              Euclidean distance  | ||
| − | |||
             Manhattan  |              Manhattan  | ||
| − | |||
             Chebyshev  |              Chebyshev  | ||
| − | |||
             Jaccard  |              Jaccard  | ||
| − | |||
             Mahalanobis  |              Mahalanobis  | ||
| − | |||
             Cosine  |              Cosine  | ||
| − | |||
         MDS (iterations and initialization):  |          MDS (iterations and initialization):  | ||
| − | |||
             max iterations: maximum number of optimization interactions  |              max iterations: maximum number of optimization interactions  | ||
| − | |||
             initialization: method for initialization of the algorithm (PCA or random)  |              initialization: method for initialization of the algorithm (PCA or random)  | ||
| − | |||
         Isomap:  |          Isomap:  | ||
| − | |||
             number of neighbors  |              number of neighbors  | ||
| − | |||
         Locally Linear Embedding:  |          Locally Linear Embedding:  | ||
| − | |||
             method:  |              method:  | ||
| − | |||
                 standard  |                  standard  | ||
| − | |||
                 modified  |                  modified  | ||
| − | |||
                 hessian eigenmap  |                  hessian eigenmap  | ||
| − | |||
                 local  |                  local  | ||
| − | |||
             number of neighbors  |              number of neighbors  | ||
| − | |||
             max iterations  |              max iterations  | ||
| − | |||
         Spectral Embedding:  |          Spectral Embedding:  | ||
| − | |||
             affinity:  |              affinity:  | ||
| − | |||
                 nearest neighbors  |                  nearest neighbors  | ||
| − | |||
                 RFB kernel  |                  RFB kernel  | ||
| − | |||
     Output: the number of reduced features (components).  |      Output: the number of reduced features (components).  | ||
| − | |||
     If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.  |      If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.  | ||
| − | |||
     Produce a report.  |      Produce a report.  | ||
Manifold Learning widget produces different embeddings for high-dimensional data.  | Manifold Learning widget produces different embeddings for high-dimensional data.  | ||
| − | + | [[File:Collage-manifold.png|center|200px|thumb]]  | |
From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.  | From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.  | ||
| − | + | ||
| + | ==Contoh==  | ||
Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing datasets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph. Then we used Scatter Plot to plot the embeddings.  | Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing datasets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph. Then we used Scatter Plot to plot the embeddings.  | ||
| − | + | [[File:Manifold-learning-example.png|center|200px|thumb]]  | |
| − | |||
Revision as of 09:22, 24 January 2020
Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/manifoldlearning.html
Nonlinear dimensionality reduction.
Inputs
Data: input dataset
Outputs
Transformed Data: dataset with reduced coordinates
Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with Scatter Plot or other visualization widgets.
   Method for manifold learning:
       t-SNE
       MDS, see also MDS widget
       Isomap
       Locally Linear Embedding
       Spectral Embedding
   Set parameters for the method:
       t-SNE (distance measures):
           Euclidean distance
           Manhattan
           Chebyshev
           Jaccard
           Mahalanobis
           Cosine
       MDS (iterations and initialization):
           max iterations: maximum number of optimization interactions
           initialization: method for initialization of the algorithm (PCA or random)
       Isomap:
           number of neighbors
       Locally Linear Embedding:
           method:
               standard
               modified
               hessian eigenmap
               local
           number of neighbors
           max iterations
       Spectral Embedding:
           affinity:
               nearest neighbors
               RFB kernel
   Output: the number of reduced features (components).
   If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.
   Produce a report.
Manifold Learning widget produces different embeddings for high-dimensional data.
From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.
Contoh
Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing datasets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph. Then we used Scatter Plot to plot the embeddings.