Difference between revisions of "Keras-timeseries-stock-tata-predict"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Onnowpurbo (talk | contribs) m (Onnowpurbo moved page Keras-timeseries-stock-tata-prediect to Keras-timeseries-stock-tata-predict)  | 
				Onnowpurbo (talk | contribs)   | 
				||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
Sumber: https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html  | Sumber: https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html  | ||
| + | |||
| + | |||
| + | |||
| + |  # '''  | ||
| + |  # https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html  | ||
| + |  # '''  | ||
| + | |||
| + |  import numpy as np  | ||
| + |  import matplotlib.pyplot as plt  | ||
| + |  import pandas as pd  | ||
| + | |||
| + |  # https://raw.githubusercontent.com/mwitiderrick/stockprice/master/NSE-TATAGLOBAL.csv  | ||
| + |  dataset_train = pd.read_csv('NSE-TATAGLOBAL.csv')  | ||
| + |  training_set = dataset_train.iloc[:, 1:2].values  | ||
| + | |||
| + |  # check head  | ||
| + |  dataset_train.head()  | ||
| + | |||
| + |  # scaling  | ||
| + |  from sklearn.preprocessing import MinMaxScaler  | ||
| + |  sc = MinMaxScaler(feature_range = (0, 1))  | ||
| + |  training_set_scaled = sc.fit_transform(training_set)  | ||
| + | |||
| + |  # create data with time step  | ||
| + |  X_train = []  | ||
| + |  y_train = []  | ||
| + |  for i in range(60, 2035):  | ||
| + |      X_train.append(training_set_scaled[i-60:i, 0])  | ||
| + |      y_train.append(training_set_scaled[i, 0])  | ||
| + |  X_train, y_train = np.array(X_train), np.array(y_train)   | ||
| + | |||
| + |  X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))  | ||
| + | |||
| + |  # train  | ||
| + |  from keras.models import Sequential  | ||
| + |  from keras.layers import Dense  | ||
| + |  from keras.layers import LSTM  | ||
| + |  from keras.layers import Dropout  | ||
| + | |||
| + |  regressor = Sequential()  | ||
| + |  regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1)))  | ||
| + |  regressor.add(Dropout(0.2))  | ||
| + |  regressor.add(LSTM(units = 50, return_sequences = True))  | ||
| + |  regressor.add(Dropout(0.2))  | ||
| + |  regressor.add(LSTM(units = 50, return_sequences = True))  | ||
| + |  regressor.add(Dropout(0.2))  | ||
| + |  regressor.add(LSTM(units = 50))  | ||
| + |  regressor.add(Dropout(0.2))  | ||
| + |  regressor.add(Dense(units = 1))  | ||
| + |  regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')  | ||
| + |  regressor.fit(X_train, y_train, epochs = 100, batch_size = 32)  | ||
| + | |||
| + |  # test  | ||
| + |  # https://raw.githubusercontent.com/mwitiderrick/stockprice/master/tatatest.csv  | ||
| + |  dataset_test = pd.read_csv('tatatest.csv')  | ||
| + |  real_stock_price = dataset_test.iloc[:, 1:2].values  | ||
| + | |||
| + |  dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0)  | ||
| + |  inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values  | ||
| + |  inputs = inputs.reshape(-1,1)  | ||
| + |  inputs = sc.transform(inputs)  | ||
| + |  X_test = []  | ||
| + |  for i in range(60, 76):  | ||
| + |      X_test.append(inputs[i-60:i, 0])  | ||
| + |  X_test = np.array(X_test)  | ||
| + |  X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))  | ||
| + |  predicted_stock_price = regressor.predict(X_test)  | ||
| + |  predicted_stock_price = sc.inverse_transform(predicted_stock_price)  | ||
| + | |||
| + |  # Plot  | ||
| + |  plt.plot(real_stock_price, color = 'black', label = 'TATA Stock Price')  | ||
| + |  plt.plot(predicted_stock_price, color = 'green', label = 'Predicted TATA Stock Price')  | ||
| + |  plt.title('TATA Stock Price Prediction')  | ||
| + |  plt.xlabel('Time')  | ||
| + |  plt.ylabel('TATA Stock Price')  | ||
| + |  plt.legend()  | ||
| + |  plt.show()  | ||
| + | |||
| + | ==Pranala Menarik==  | ||
| + | |||
| + | * [[Keras]]  | ||
Latest revision as of 08:11, 6 August 2019
Sumber: https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html
# # https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html # import numpy as np import matplotlib.pyplot as plt import pandas as pd # https://raw.githubusercontent.com/mwitiderrick/stockprice/master/NSE-TATAGLOBAL.csv dataset_train = pd.read_csv('NSE-TATAGLOBAL.csv') training_set = dataset_train.iloc[:, 1:2].values # check head dataset_train.head() # scaling from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range = (0, 1)) training_set_scaled = sc.fit_transform(training_set) # create data with time step X_train = [] y_train = [] for i in range(60, 2035): X_train.append(training_set_scaled[i-60:i, 0]) y_train.append(training_set_scaled[i, 0]) X_train, y_train = np.array(X_train), np.array(y_train) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) # train from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout regressor = Sequential() regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1))) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50)) regressor.add(Dropout(0.2)) regressor.add(Dense(units = 1)) regressor.compile(optimizer = 'adam', loss = 'mean_squared_error') regressor.fit(X_train, y_train, epochs = 100, batch_size = 32) # test # https://raw.githubusercontent.com/mwitiderrick/stockprice/master/tatatest.csv dataset_test = pd.read_csv('tatatest.csv') real_stock_price = dataset_test.iloc[:, 1:2].values dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0) inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values inputs = inputs.reshape(-1,1) inputs = sc.transform(inputs) X_test = [] for i in range(60, 76): X_test.append(inputs[i-60:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predicted_stock_price = regressor.predict(X_test) predicted_stock_price = sc.inverse_transform(predicted_stock_price) # Plot plt.plot(real_stock_price, color = 'black', label = 'TATA Stock Price') plt.plot(predicted_stock_price, color = 'green', label = 'Predicted TATA Stock Price') plt.title('TATA Stock Price Prediction') plt.xlabel('Time') plt.ylabel('TATA Stock Price') plt.legend() plt.show()