Difference between revisions of "Hadoop: Contoh Program Sederhana"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) (New page: Sumber: http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 Hadoop: Writing and Running Your First Project MapReduce on small datasets can be run e...) |
Onnowpurbo (talk | contribs) |
||
| (5 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | Sumber: http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 | + | Sumber: |
| − | + | * http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 | |
| − | + | * https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ==Source Code== | |
| − | + | Contoh source code WordCount.java untuk menghitung jumlah masing-masing kata dari sebuah input set. | |
| − | + | cd ~ | |
| + | vi WordCount.java | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | package org.myorg; | |
| − | + | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | package | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
import java.io.IOException; | import java.io.IOException; | ||
| − | + | import java.util.*; | |
| − | public class | + | |
| − | + | import org.apache.hadoop.fs.Path; | |
| − | + | import org.apache.hadoop.conf.*; | |
| − | + | import org.apache.hadoop.io.*; | |
| − | + | import org.apache.hadoop.mapred.*; | |
| − | + | import org.apache.hadoop.util.*; | |
| − | + | ||
| − | + | public class WordCount { | |
| − | + | ||
| − | + | public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { | |
| − | + | private final static IntWritable one = new IntWritable(1); | |
| − | + | private Text word = new Text(); | |
| − | + | ||
| − | + | public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { | |
| − | + | String line = value.toString(); | |
| − | + | StringTokenizer tokenizer = new StringTokenizer(line); | |
| − | + | while (tokenizer.hasMoreTokens()) { | |
| − | + | word.set(tokenizer.nextToken()); | |
| − | + | output.collect(word, one); | |
| − | + | } | |
| + | } | ||
| + | } | ||
| + | |||
| + | public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { | ||
| + | public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { | ||
| + | int sum = 0; | ||
| + | while (values.hasNext()) { | ||
| + | sum += values.next().get(); | ||
| + | } | ||
| + | output.collect(key, new IntWritable(sum)); | ||
| + | } | ||
| + | } | ||
| + | |||
| + | public static void main(String[] args) throws Exception { | ||
| + | JobConf conf = new JobConf(WordCount.class); | ||
| + | conf.setJobName("wordcount"); | ||
| + | |||
| + | conf.setOutputKeyClass(Text.class); | ||
| + | conf.setOutputValueClass(IntWritable.class); | ||
| + | |||
| + | conf.setMapperClass(Map.class); | ||
| + | conf.setCombinerClass(Reduce.class); | ||
| + | conf.setReducerClass(Reduce.class); | ||
| + | |||
| + | conf.setInputFormat(TextInputFormat.class); | ||
| + | conf.setOutputFormat(TextOutputFormat.class); | ||
| + | |||
| + | FileInputFormat.setInputPaths(conf, new Path(args[0])); | ||
| + | FileOutputFormat.setOutputPath(conf, new Path(args[1])); | ||
| + | |||
| + | JobClient.runJob(conf); | ||
| + | } | ||
} | } | ||
| − | + | ==Compile== | |
| − | + | Asumsinya HADOOP_HOME adalah root instalasi dan HADOOP_VERSION adalah versi Hadoop yang di install, compile WordCount.java dan buat jar: | |
| − | + | export HADOOP_HOME=/usr/local/hadoop/share/hadoop/common | |
| − | + | export HADOOP_VERSION=2.7.1 | |
| − | |||
| − | |||
| − | + | mkdir wordcount_classes | |
| + | javac -classpath ${HADOOP_HOME}/hadoop-common-${HADOOP_VERSION}.jar -d wordcount_classes WordCount.java | ||
| + | jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ . | ||
| − | + | ==Penggunaan== | |
| − | |||
| − | + | Asumsi | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | /usr/joe/wordcount/input - input directory di HDFS | |
| + | /usr/joe/wordcount/output - output directory di HDFS | ||
| − | + | Sample text-files as input: | |
| − | + | bin/hadoop dfs -ls /usr/joe/wordcount/input/ | |
| − | + | /usr/joe/wordcount/input/file01 | |
| + | /usr/joe/wordcount/input/file02 | ||
| + | bin/hadoop dfs -cat /usr/joe/wordcount/input/file01 | ||
| + | Hello World Bye World | ||
| + | bin/hadoop dfs -cat /usr/joe/wordcount/input/file02 | ||
| + | Hello Hadoop Goodbye Hadoop | ||
| + | Jalankan aplikasi | ||
| + | bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input /usr/joe/wordcount/output | ||
| + | Output: | ||
| + | bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000 | ||
| + | Bye 1 | ||
| + | Goodbye 1 | ||
| + | Hadoop 2 | ||
| + | Hello 2 | ||
| + | World 2 | ||
| Line 157: | Line 117: | ||
* http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 | * http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 | ||
| + | * http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197?pgno=2 | ||
| + | * https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html | ||
Latest revision as of 16:58, 9 November 2015
Sumber:
- http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197
- https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
Source Code
Contoh source code WordCount.java untuk menghitung jumlah masing-masing kata dari sebuah input set.
cd ~ vi WordCount.java
package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
Compile
Asumsinya HADOOP_HOME adalah root instalasi dan HADOOP_VERSION adalah versi Hadoop yang di install, compile WordCount.java dan buat jar:
export HADOOP_HOME=/usr/local/hadoop/share/hadoop/common export HADOOP_VERSION=2.7.1
mkdir wordcount_classes
javac -classpath ${HADOOP_HOME}/hadoop-common-${HADOOP_VERSION}.jar -d wordcount_classes WordCount.java
jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ .
Penggunaan
Asumsi
/usr/joe/wordcount/input - input directory di HDFS /usr/joe/wordcount/output - output directory di HDFS
Sample text-files as input:
bin/hadoop dfs -ls /usr/joe/wordcount/input/ /usr/joe/wordcount/input/file01 /usr/joe/wordcount/input/file02
bin/hadoop dfs -cat /usr/joe/wordcount/input/file01 Hello World Bye World
bin/hadoop dfs -cat /usr/joe/wordcount/input/file02 Hello Hadoop Goodbye Hadoop
Jalankan aplikasi
bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input /usr/joe/wordcount/output
Output:
bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000 Bye 1 Goodbye 1 Hadoop 2 Hello 2 World 2